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Chaotic Rocking Vibration of a Rigid Block with Sliding Motion 
Under Two-Dimensional Harmonic Excitation 
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This research deals with the influence of nonlinearities associated with impact and sliding 

upon the rocking behavior of a rigid block, which is subjected to two-dimensional horizontal 

and vertical excitation. Nonlinearities in the vibration were found to depend strongly on the 

effect of the impact between the block and the base, which involves an abrupt reduction in the 

system's kinetic energy. In particular, when sliding occurs, the rocking behavior is substantially 

changed. Response analysis using a non-dimensional  rocking equation was carried out for a 

variety of excitation levels and excitation frequencies. The chaos responses were observed over 

a wide response region, particularly, in the cases of high vertical displacement and violent 

sliding motion, and the chaos characteristics appear in the time histories, Poincare maps, power 

spectra and Lyapunov exponents of the rocking responses. The complex behavior of chaotic 

response, in phase space, is illustrated by the Poincare map. The distribution of the rocking 

response is described by bifurcation diagrams and the effects of sliding motion are examined 

through the several rocking response examples. 
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I. Introduction 

The Hyogoken-nanbu earthquake in January, 

1995 carried block objects such as tombstones, 

historical monuments, refrigerators, furniture, and 

super computers to tumble over. It was reported 

as one of the most violent earthquakes for over a 

century, and produced violent ground motion in 

the vertical direction. In particular, most collapses 

and fall over damage incidents reported during 

the earthquake were caused by violent sliding 
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motion. 

Previous studies on this issue were carried out 

under extremely simplified rocking conditions, 

which neglected sliding motion (Spanos and Koh, 

1984; Tso and Wong, 1989) and the energy 

dissipation associated with this sliding motion 

(Aslam et al., 1980; Yim et al., 1980). For most 

rocking bodies, however, such an ideal condition 

cannot be assumed. Therefore, it is necessary to 

investigate the rocking behavior of a rigid body 

under realistic conditions and to include the 

nonlinear effects of impact and sliding. 

Most experimental work on rocking vibration 

reported that rocking did not appear although 

the excitation was periodic (Jeong and Suzuki, 

1995). This non-reappearance is caused by non- 

linearity of the sliding motion of the block and 

the impact between a block and its base. The 
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contact condition of the block and its base can 

be delicately changed by altering the block posi- 
tion. Therefore, the rocking response is sensitively 
influenced by a small change in the contact 
between the block and its base, and the sliding 
motion and energy dissipation at that time. 

This paper deals with several basic character- 
istics of  the rocking motion as demonstrated by 
rocking response analysis results using a non- 
linear rocking model. The nonlinearities of the 
rocking system are due to transitions of governing 
equations and due to energy dissipation during 
impact between the block and its base. 

2. R o c k i n g  E q u a t i o n s  

2.1 Rocking equations 
Including the sliding motion, the rocking block 

system subjected to two-dimensional excitation in 
the horizontal and vertical directions is shown in 
Fig. 1, where ao(t)  and ah(t)  are the vertical 
and horizontal excitations, and x, y and 0 are the 
horizontal, vertical and angular displacements of 
the mass center, respectively, fx  is the reaction 
force in the horizontal direction and fy is the 
reaction force in the vertical direction. 

a h > ~ - ( g + a ~ )  (1) 

the block and the base are given by 

fx=rnah(t) +m~ (2) 
fy = myl + m g +  may (3) 

The condition for sliding during rotation is 
given by 

a~ < )~+ah (4) Y~+g+av 

The relationship between the horizontal and 
vertical reaction forces and the kinetic friction 
coefficient of sliding or rotational sliding motion 
is described by 

~ + a h  = - - S  (.~0)/zk{ Y~+g+av } (5) 

The governing equation of  motion about the 
rotation centers 0 and O'  is described by 

I o 0 = - ( m ~ + m g + m a ~ ) R {  S(O) s in(¢-I  0 ]) 
+S(x0) Pk cos(~b-[ 0 I)} (6) 

which is defined on the basis of the signum 
functions, S(O) and S(Yco). The equations for 
rocking motion and sliding motion can be 
expressed as 

O"bl~fl(O, 19p, ~ ) = 0  (7) 
~ + , ¢ A ( o ,  0,, ~ )=-ah( t )  (8) 

where fl(O, Op, Yc) and f2(O, Op, x) are 

/~(0, Op, i) 
where g" is the gravitational acceleration. The S(O){sin(@-IO[)+S(O)S(Yco)~COS(¢-IOI)}{1-rcos(CaqOI)O/} 
horizontal and vertical reaction forces between - {l+rsin2(~_lOl)+rS(O)S(io)~cos(¢_lO[)sin(~_lOi)} 

f,(O, Op, x) 
B 

Y H ;i~ 

by 

(9) 

f, 
Fig. 1 Rocking of a rigid block 

~s(~,) s(o){ l-r¢o~(i-I 0 I)6q (lO) 
r{ 1+ r sinZ(~-I 0 I)÷rs(o)S(xo)~,¢os(¢-I o I)=(~-I 0 I) } 

Io is the moment of inertia about the block edges 
given by 

4 m R  2 
lo-- 3 ( l l )  

The rocking frequency of the block is represented 

m g R  3 g 
g =  _To = 4 R  (12) 

m R  2 
r =  lo (13) 

= 4  (14) & 
p 
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and the relative horizontal displacement and its 

velocity are described by 

Xo=x-S(O)Rs in( ,5 - I  0 l) (15) 
. ~ 0 : 2 + R  cos(~b-I 0 [) tO (16) 

2.2 Impact of block and base 

The impact between the block and its base 
has a large effect on the rocking behavior. There- 
fore, careful modeling of the impact is essential. 
The energy related dissipation at impact without 

sliding motion is constant and depends on the 
block shape ratio. It is called a coefficient of 

restitution. However, when sliding occurs, the 
energy dissipation is affected by the sliding 
motion and the associated energy loss is largely 
dependent on the magnitude of the horizontal 
sliding motion. Using the principle of impulse 
and momentum, an impact model was established 
by Shenton (Shenton and Jones, 1991). The 
effects of the sliding motion on the impact were 
illustrated in our last study, and therefore, we 
refer to this paper for a detailed explanation 
(Jeong and Suzuki, 1997). 

In the case of no sliding motion, the post- 
impact velocity of the mass center, in terms of the 
scalar components 2z, .92 and 02, is expressed in 
terms of the pre-impact velocities 2a, .9~ and tga as 

~ z = - - f f f '  & (17) 

.gz=-S(OJ.)~-(8~+Ze) O, (18) 

in which the energy dissipation rate is given by 

8 i = l - - 3 ( l + A x ) C O S  2 ~ b - 3 ( l + e ) s i n z , 5  (20) 

where the rate of change in the horizontal and 
angular velocities/~ and the restitution coefficient 

e are defined by 

2~?, (21) 
2~= Htgl 

3 • 2 e = 1 - -~-  sm ¢,b (22) 

If sliding does not occur, the rate of change in the 
horizontal and angular velocities Ax will be --1. 

The sliding occurrence condition at impact is 
expressed by 

/ is2 BH 8,+/]x (23) 
1 + 2 e +  8~ 

and the relationship between pre-impact and 
post-impact velocities becomes 

5cz=.~a+S(01) S(Yc,..,)/]k~-(l +~-~+2e) 0~ (24) 

p2= - S ( o,) B ( g, + 2e) O, (25) 

02----8,0~ (26) 

in which the energy dissipation rate is expressed 

a s  

B , ~ )  (1 +2e)sin ¢ 1--3(1-S(6~) S(2,2) H z 
L -  (27) 

l + 3( l -  S(Ot) S(Yc,~) ~k~-) sin2 ~ 

3. Rocking Response Analysis 

The rocking period of a block depends on the 
block size parameter R as shown in Eq. (7). 
Therefore, the rocking frequency p is the most 
significant parameter in the rocking system. The 
rocking equation is normalized by setting 19= 

0/~', Pt = r, f2= w, X = x / R  and Xo=xo /R  to 
simplify the problem. As a result, the normalized 
rocking equations are expressed by 

~)+ffl(19, Op, ) ( )=0  (28) 
ah(t) 

X+PZfz(19, Op, X ) -  R (29) 

SlO)( sin C,(I-I OI) + S(OIS(L)~co.)li-I OI)}{ l+~-~co#(I-I Ol~)} (30) 

{ I+rsi; ff(l-] 01) +rSI0)S(.L)~c0s 0-101)sinff(l-I 0])} 
/~(0, O,..~) 

-- ,~{ l+rsin z ~(I-I 8 [)+rS(8)SIj(,)~cos ~(l-I 8 [)sin Ifl-[ 8 I:} 

(31) 

The normalized horizontal displacement Xo of 
the block edge is expressed in terms of  the 
normalized mass center displacement X and the 
normalized angular displacement 0.  

S o = g - s ( 1 9 ) s i n  ,5(1-]  19 1) (32) 
X o = X + c o s  ~b( l - I  19 l) (O (33) 
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In this study, the horizontal and vertical base 
excitations are assumed to be described by 

ah (t) =Ah~bg sin (~2r+ q)) (34) 
av (t) =Av~bg sin (22r+ q~) (35) 

When the block is rotating without sliding, the 
normalized post-impact velocities are expressed 

by 

Xz- -  H~b& 01 (36) 
2R 

B~b (3-i+2e) 01 (37) I ~ 2 = - s ( o l )  5 ~ - ,  

02=&01 (38) 

in which 

2X1 
Ax= HOx (39) 

and the normalized energy dissipation rate is the 
same as that shown in Eq. (20). When the block 
is rotating and sliding, the normalized post- 
impact velocities are expressed by 

, B~b 1 Xz=Xx+ S(Ol) S(X,,),fik~-( +8-i+2e) 01 (40) 

B e  ~ + 2 e  

Oz=&Ox (42) 

Then, the normalized energy dissipation becomes 

1-3{ 1-S (0 , )S(X,z) / t4  } (1 + 2e) sin2 ~ 
8-,= (43) 

l +3{1-S(Ol) S(ff~o) ~k~  }sin2 0 

Using the Ralston's Runge-Kutta method, rock- 
ing response analysis was carried out in order to 
investigate the chaotic characteristics of a rocking 
system. The normalized sampling time of numeri- 
cal integration 0.004 and is decreased by a factor 
of ten in the part of  signum change until nor- 
malized angular displacement becomes sufficien- 
tly small, namely, under 10 -8. The transition of the 
rocking equation is carried out using Eq. (8) for 
the kinetic energy dissipation at impact. The algo- 
rithm of the rocking response analysis program is 
shown in Fig. 2 and this was further developed in 
order to obtain accurate results on numerical 
analysis. The algorithm includes the two pro- 
cesses of rotation and impact; i.e., the rotational 

Fig. 2 Algorithm of the rocking response analysis 
program 

process judges sliding as a rotational motion, by 
Eq. (4) and solves the simultaneous Eqs. (30) 
and (31) by the Ralston's Runge-Kutta method. 
The impact process determines the point of 
normalized angular displacement 0 approximately, 
and calculates the post-impact velocity using 
Eq. (20) or (27) and then exchanges the signum 
function S(O) in the rocking equation. 

4. Examination of Rocking Response 

In order to investigate the nonlinear charac- 
teristics of  a rocking system with sliding motion, 
rocking responses without sliding were first ex- 
amined. The effect of  sliding motion upon the 
rocking behavior was examined by comparing 
no-sliding-rocking with sliding-and-rocking. 

The rocking response characteristics were ex- 
amined by comparing the no sliding case with the 
sliding case for different distributions of rocking 

mode and trajectories in phase space. The chaotic 
behavior is characterized by a random-like, un- 
predictable aspect as well as a rocking motion, 
although the excitation is deterministic and per- 
iodic. Unpredictability arises from the extremely 
sensitive dependence of rocking response on ini- 
tial conditions, and system and excitation para- 
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meters. Nearly identical trajectories of chaotic 

motion, with seemingly infinitesimally different 

initial conditions, diverge exponentially, leading 

to large differences in the long-term predictions 

of the response. In this study, the next four 

methods are used in the response analysis to 

examine rocking responses. 

Bifurcation diagrams show changes in system 

characteristics for given changes in system or 

excitation parameters. The bifurcation diagram is 

a plot of the normalized angular displacement 

against the excitation force 0 in the rocking 

response data from 150,000 to 200,000. Therefore, 

the diagram corresponds to Poincare's point for 

the zero excitation force. The Poincare map is 

constructed from strobe points in the phase space 

of the rocking response associated with an zero 

excitation force. It appears as a strange attractor 

in the case of chaotic response, and as one or 

more fixed points in the case of periodic response. 

The spectral density function is also useful for 

examining the periodicity of response. Periodic, 

quasi-periodic, and chaotic responses have a sin- 

gle dominant frequency, a finite number of in- 

commensurate frequencies, and an infinite num- 

ber of frequencies (i.e., a wideband spectrum), 

respectively. Power spectra of rocking response 

are created by using a time history of from 3,000 

to 7,096. The Lyapunov exponent is a quantita- 

tive measure of the divergence rate of trajectories 

in phase space. The Lyapunov exponent of chao- 

tic response is positive, whereas those of the 

quasi-periodic and periodic responses are zero 

and minus, respectively. 

the sampling amplitude of 0.02 and the blank in 

the diagram means the tumbling of the block. 

Figs. 3--4 show the bifurcation diagrams of the 

rocking responses for ~h=-~v=8 ,  A v = 0 - 3  and 

A h = 3 ,  respectively. 

Figs. 5 ~ 6  are the bifurcation diagrams obtained 

with the same conditions except for £2h=~v=  10. 

AS shown in these bifurcation diagrams, there 

are three types of rocking responses, namely, 

stable periodic rocking responses, chaotic rocking 

responses and tumble responses. Firstly, Fig. 3 

shows the periodic response of the (1,1) mode 

from 0 to about 0.7, of vertical amplitude. Perio- 

dic responses of the (1,2) mode from about 0.7 to 

1.25 and the higher order rocking periodic and 

chaotic responses coexist in the region over the 

normalized vertical amplitude of 1.25. On the 

other hand, Fig. 4 shows the periodic response of 

1 

0.8 

0.6 

0.4 

0.2 

0 

-0.2 

-0.4 

-0.6 

-0.8 

-1 

Fig. 3 

1 

0.8 
4.1 Rocking response without sliding o.8 

To investigate dependence of rocking responses 0.4 

upon excitation amplitude, numerical analysis 0.2 

was carried out when the other parameters were ~ 0 

fixed. The fixed system and excitation parameters -0.2 

were, B = I  m, H = 4  m, e=0.925 and ~ h = 8  or -0.4 

10, the excitation amplitude in the vertical direc- -0.6 

tion was the only variable, which was examined -0.8 

from 0 to 3, in the rocking response analysis 

and the excitation frequencies were limited to the 

same values in the horizontal and vertical direc- Fig. 4 

tions. The bifurcation diagram was formed for 

I '  
i. 
I, 

i i i ~ i 

0.5 1 1.5 2 2.5 3 

A 

Bifurcation diagram for rocking responses 
(g2h=,Qv=8, Ah=2.0, A o = 0 - 3 )  

i i i 

0.5  1 1.5 2 2 ,5  3 

/ l  v 

Bifurcation diagram for rocking responses 
(£2h=~2~=8, Ah=3.0, Ao=0--3)  
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the (1,1) mode, in the rocking response region, 

from 0 to about a vertical amplitude 1.7, and the 

periodic response of the (1,2) mode from about 

1.7 to 2.25, and the periodic response of the (1,4) 

mode from about 2.25 to 2.3 and a chaotic 

response after 2.3. Figs. 5--6  show the same 

tendency as Figs. 3~4 ,  but the region of the 

periodic response is wider and the region of 

tumbling narrower. In the case of Fig. 4 and Fig. 

6, the diagrams apparently show a periodic-  

double bifurcation for a change of vertical 

amplitude, but the two diagrams of Figs. 3 and 5 

show intermittency bifurcation. When comparing 

equal amplitudes, it follows that the region of 

periodic and quasi-periodic responses is 

expanded with increase in the excitation fre- 

quency, the chaotic region narrows and the 

tumbling response decreases. 

Examples of chaotic responses in the bifurca- 

tion diagram of  Figs. 3 and 6 are shown in Figs. 

7~8 ,  in which figures (a), (b) and (c) indicate 

the time history, the power spectra and the 

Fig. 5 
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Bifurcation diagram for rocking responses 
(f2h=Qv= 10, Ah=2.0, A ~ = 0 - 3 )  
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A 

Bifurcation diagram for rocking responses 
(f2h=Y2~=10, Ah=3.0, A v = 0 - 3 )  
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Fig. 7 Rocking response without sliding(Qh=f2v=8, Ah=2.0, Av=2.5) 
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- 0 . 3  

(a) Time history of normalized angle 
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Rocking response without sliding(,Qh=[2v=10, Ah=3.0, Av=2.5) 

Poincare map for the rocking response, respec- 1 

tively. The maximum amplitude of the rocking 0.8 
0.6 

response when f2h=f2~=8 is larger than for 
0.4 

f2h=~Qv=10 although the excitation amplitude 0.2 

in the horizontal direction Ah is smaller. These ~ 0 

figures illustrate that responses at lower input -0.2 

frequencies are expanded widely in the phase -0A 

space and that the chaotic attractor is composed -0.6 

of multiple limit cycles, which are characterized -0.8 
-1 by a unique shape, which is 'asymmetrical' to 

zero angular displacement and 'whirled' in the 

counter clockwise direction. The Lyapunov 
Fig. 9 

exponents for these chaotic responses were 0.74 

and 1.02, respectively. 

, . . ;  : :  

,+ ei~" ~!,i,i-~=. =;!'i:: r. i 

, !!!!l%q~. P~I!I~: ,,",",1~:,':4' 

L' . I ! I I : ; .  =:; i'-" " 

0 0.5 1 1.5 2 2.5 3 

A 

Bifurcation diagram for rocking responses 

([2h=,(2~=8, Ah=2.0, A v = 0 - 3 ,  ,us=/z~= 
0.4, ,uk=fi~=0.35) 

4.2 Rocking response with sliding 
In this section, in order to investigate the effect 

of sliding motion upon rocking response, we 

compared the rocking with the rocking-with- 

sliding responses. The bifurcation diagram for 

rocking response with ~h=g2v=8,  A v = 0 - - 3 ,  

and Ah=2,  and a static friction coefficient, ,Us= 

/~s=0.4 and a kinetic friction coefficient, ,U~= 

/Jk=0.35 as shown in Fig. 9. The bifurcation 

diagram for the same conditions, except lzs=~s = 

0.35 and ,uk=/Zk=0.3, is shown in Fig. 10. The 

upper bar means the frictional coefficient at 

impact. The rocking behavior is affected by the 

sliding motion in the horizontal direction, and 

the distribution of the rocking response is 

dependent on the frictional coefficient. An 

example is shown in Fig. 10, in this case, the 

Lyapunov exponent was 0.51. 

We next examinded the two rocking responses 

to investigate the effect of sliding on rocking 
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response, which shows chaotic behavior even 

without sliding. Figure 11 shows an example for 

,Qh=,Qv=8, A h = 2 ,  and Av=2.0 ,  the static fric- 

tion coefficient and the kinetic friction coeffi- 

cient. Figures. 7, 12--13 show responses for the 

identical excitation condition, but with a different 

frictional coefficient, the attractor shape becomes 

Fig. I0 

0.25 

0.2 

0.15 

0.1 

0.05 

0 

-0.05 

-0.1 

-0.15 

-0.2 

-0.25 
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A 

Bifurcation diagram for rocking responses 

(,(2h=.Qv=8, Ah=2.0, Av=0-3+ ~+=/~s= 
0.35, /zk=/3,=0.3) 

smaller on lowering the frictional coefficient, and 

it is shown that the maximum amplitude of the 

rocking response is lowered. Though it had 

reached a tumbling level in the case of Fig. 6, the 

maximum amplitude was about 0.75 in Fig. 12, 

and this became about 0.4 in Fig. 13. Lowering 

of the frictional force between the block and the 

base, and this increasing energy dissipation by 

sliding, produced a smaller rocking response 

attractor shape and a smaller rocking response 

maximum amplitude, if the excitation frequencies 

in the horizontal and vertical directions are iden- 

tical. The Lyapunov exponents for the rocking 

response of Figs. 12--13 were 0.71 and 1.34, 

respectively. 

The bifurcation diagram for rocking responses 

with 3e2h=3'2v= 10, A v = 0 - 3 ,  A h= 3 ,  is shown in 

Fig. 14. The bifurcation diagram for the same 

conditions used in Fig. 14 is shown in Fig. 15. 

The chaotic response region is expanded in these 

bifurcation diagrams by lowering its frictional 

coefficient. The examples of rocking response in 

Fig. II 
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Fig. 14 are shown in Figs. 16-- 17. By comparing 
the bifurcation diagrams shown in Figs. 9--  10, it 

may be understood that the chaotic response 

region is widely extended at higher excitation 

frequencies and becomes wider in the case with 

sliding than in the case without sliding. That is, 

the frictional force between the block and its base 

affects the rocking response at higher excitation 
frequencies, and the sliding movement is also 
intense. 

4.3 Sliding and the attractor shape 
In this section, we examine the influence of 

sliding upon attractor shape. When the horizontal 
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excitation amplitude is comparatively small, 

as shown in Figs. 7, 12~ 13, the number of attrac- 

tion regions decreases on lowering the friction 

coefficient, and the attractor becomes more com- 

pact in shape, and the fundamental form of the 

attractor does not change. However, when the 

excitation amplitude is comparatively large at 

A h = 3 ,  the shape of the attractor is comparable to 

the case without sliding, as shown in Figs. 18-- 

19. This means that the magnitude of horizontal 

displacement by sliding produces large effects in 

the shape of the attractor. The change in the shape 

of the attractor increases as the sliding motion is 
increased, and when the horizontal displacement 

produced by sliding is large, and it takes a form 

which inclines toward the negative direction 

for the rotational velocity axis. The Lyapunov 

exponents for these responses were 1.91 and 1.76. 

Lyapunov exponent increases more so in the 

presence of sliding. It follows that the sliding 

motion intensifies the chaoticity of the rocking 

response. In the case of  the rocking vibration 

created by the two-dimensional  input in which 

the horizontal and vertical excitation frequencies 

are identical, sliding occurs only in the reverse 

direction of the rocking, because it is fixed by the 

excitation amplitude and frequency in the hori- 

zontal and vertical directions, the vibration 

direction of the base is fixed in some direction, and 

the reverse-directioned rotational displacement 

with sliding induced by rocking also increases. 

For  rocking vibration with sliding, it becomes 

the unstable motion in which only the other 

rotational displacement by the effect of  sliding 

motion increases, as described previously. It is 

estimated that the effect on rocking response 
increases, if any disturbance is applied to this 

exercise condition for the rocking vibration sys- 

tem. That is, the oscillation which cannot be 

simply considered in the analytical model seems 

to exist on the lowering cause of the tumble con- 

dition and the non-reappearance of the experi- 

mental rocking response with sliding in research 

to date. Minute changes in the frictional force and 

the contact between the block and the base occur 
as a result of considering this oscillation. It 
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cannot be said that the rocking vibrational 

characteristics caused by the two-dimensional  

excitation were sufficiently able to be grasped, 

since in this paper, it forced the excitation 

frequency to be 8 and 10, and limited, when the 

normalized excitation frequency in the horizontal 

direction was identical to that in the vertical 

direction. 

In particular, we intend examining rocking 

vibration in which the excitation frequency in the 

horizontal direction differs from that in the verti- 

cal direction in the future. Moreover, it is neces- 

sary from the chaotic dynamic viewpoint that 

consideration of  the experimental rocking vibra- 

tion response is more exactly carried out to clarify 

these nonlinearities of impact and provide more 

precise rocking behavior characteristics, because 

it seems to account for minute fluctuations of 

frictional force between the block and base and 

the energy dissipation at the time of  impact in a 

real rocking vibration system. 

5. Conclusions 

(1) In the case of no sliding, the regions of 

periodic and quasi-periodic responses are 

expanded with an increase in the excitation fre 

quency, the chaotic region narrows and the tum- 

bling response decreases. The intermittency chaos, 

in which the periodic response intermingles with 

the chaotic response for a comparatively small 

level change in excitation amplitude is shown, 

and at high excitation amplitude, it changes to 

chaotic response by period-doubling.  

(2) There is a case in which it becomes a 

chaotic response by sliding, even in the region 

showing a periodic response in the case of no 

sliding. That is, the chaotic response region gets 

wider when sliding occurs. 

(3) When sliding occurs, the size of an attrac- 

tor prevented by a rocking response caused by 

lowering the friction force between the block and 

the base decreases, and the maximum amplitude 

of the rocking response also decreases. The per- 
iodic response region narrows with the lowering 

of the frictional force and the chaotic response 

region is expanded. 

(4) The magnitude of the horizontal displace- 

ment carried by sliding has an influence on the 

attractor shape of the rocking response. More- 

over, the shape of the attractor reduces and the 

attractor becomes biased in a negative direction 

for the angular velocity axis. In this case, the 

Lyapunov exponent increases and chaoticity of  

the rocking response is strengthened. 
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